
2007 JavaOneSM Conference | Session 2401 |

TS-2401

Java Language Modularity
With Superpackages

Alex Buckley
JSR 294 Co-spec lead
Sun Microsystems

Andreas Sterbenz

JSR 294 Co-spec lead
Sun Microsystems

2007 JavaOneSM Conference | Session 2401 | 2

Goal

Discover how superpackages will
ease information hiding and promote
encapsulation in your Java™ applications

In the Next 60 Minutes...

2007 JavaOneSM Conference | Session 2401 | 3

Agenda
Modularity
Information Hiding
Superpackages
Package Interfaces
Java Specification Request (JSR) 294
Q&A

2007 JavaOneSM Conference | Session 2401 | 4

Agenda
Modularity
Information Hiding
Superpackages
Package Interfaces
Java Specification Request (JSR) 294
Q&A

2007 JavaOneSM Conference | Session 2401 | 5

What Makes a Program Modular?
● Interfaces

● Don’t rely on implementations
● Protocols

● Enforce good idioms
● Information hiding

● If you can’t see it, you can’t use it
● Contracts

● If you use it, use it right
● Versions, resource declarations, centralized

exception handling, etc.

2007 JavaOneSM Conference | Session 2401 | 6

Standards for Modularity

JSR 291
OSGi

Maven, Ivy
Resources

JSR 277
Packaging

JSR 294
Information

Hiding

Java
Programming

Language
Interfaces
Assertions

Information Hiding

2007 JavaOneSM Conference | Session 2401 | 7

Agenda
Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294
Q&A

2007 JavaOneSM Conference | Session 2401 | 8

Information Hiding Circa 1972

“ Each module is characterized by its
knowledge of a design decision which
it hides from all others. Its interface is
chosen to reveal as little as possible
about its inner workings. ”

D.L.Parnas
http://www.acm.org/classics/may96/

2007 JavaOneSM Conference | Session 2401 | 9

Information Hiding Circa 2007
● Information hiding supports encapsulation
● Encapsulation supports reliable software

● Information hiding is an issue of program design
● Should be enabled by the language itself
● Accessibility modifiers strike a good balance

● Simple
● No overlap (Witness removal of private protected)

2007 JavaOneSM Conference | Session 2401 | 10

Packages for Information Hiding
● Packages help to prevent name conflicts

● But are not namespaces
● Packages support information hiding

● But do not follow its central tenet: Provide an interface
● Package names are hierarchical

● But package membership is not hierarchical
● Member of package P.Q is not member of package P

● Projects are often larger than a single package
● But packages cannot be composed into a larger entity
● "public is too public"

2007 JavaOneSM Conference | Session 2401 | 11

"public is too public"

package P package P.Q

Client

(Not realistic to make package
membership hierarchical)

2007 JavaOneSM Conference | Session 2401 | 12

Existing Approaches
● Lack of documentation
● Class loaders
● Static classes

2007 JavaOneSM Conference | Session 2401 | 13

Information Hiding via
Lack of Documentation
● Idea: Do not document “internal” packages
● Hope nobody will find them
● Problems are obvious

2007 JavaOneSM Conference | Session 2401 | 14

Information Hiding via Class
Loaders
● Idea: two class loaders per “component”

● Internal class loader—Resolves all classes
● Public class loader—Resolves only exported classes

● Problems
● Does not address compile time
● Does not prevent access via reflection
● Breaks down if internal class loader object is “leaked”
● Sometimes unclear which class loader should be used

● What should the context class loader be set to?

● Not what class loaders were designed for

2007 JavaOneSM Conference | Session 2401 | 15

Information Hiding via Static
Classes
● Instead of creating multiple packages, put all

classes into one package
● Each package becomes a top-level public class
● Each class becomes a static nested class

● Public, package private, or private as desired

● Problems
● Non-intuitive
● At the VM level, there are no private nested classes

● They are realized as package private classes
● Converting existing code requires renaming classes
● Many classes in each source file

2007 JavaOneSM Conference | Session 2401 | 16

Goal: A language Construct for
Information Hiding
● An entity bigger than a package

● Accessibility within the entity is wider than
package-private but narrower than public

● Hierarchical names guide accessibility
● Entity P.Q can be a [hidden] member of entity P

● Run-time access control
● Universally understood

● Interfaces for packages and these new entities
● A basis for deployment modules

2007 JavaOneSM Conference | Session 2401 | 17

What We Don’t Want to Do
● Introduce friend

● Appropriate in C++ (operator overloading,
no packages)

● Offers no higher-level entity for composing types
● Offers no basis for deployment modules

● Embed deployment modules in the language
● Burden programmers who don't use

the new entity
● Have compile-time and run-time behavior differ

● No leaky abstractions!

2007 JavaOneSM Conference | Session 2401 | 18

Agenda
Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294
Q&A

2007 JavaOneSM Conference | Session 2401 | 19

Definition
● A superpackage is a named collection of

one or more packages or superpackages
and their types

● Public types can be declared as exported to
make them accessible outside the superpackage

● Public types that are not exported are accessible
only to other types in the superpackage

● Declared in a Java source file
(super-package.java) and compiled
by the Java compiler

2007 JavaOneSM Conference | Session 2401 | 20

What a Superpackage Is Not
● A package(!)
● A namespace
● A type

2007 JavaOneSM Conference | Session 2401 | 21

Example
superpackage jdk {
member package java.util;
member package java.io;
member package sun.io; // Impl detail
export java.util.*; // Public API
export java.io.*;

}

2007 JavaOneSM Conference | Session 2401 | 22

package P package P.Q

superpackage S

Client

2007 JavaOneSM Conference | Session 2401 | 23

Superpackages at Compile-Time
● super-package.java declares

which types belong to a superpackage
● .java files do not declare

which superpackage they belong to

/* Run javac here */

● .spkg file declares
which types belong to a superpackage

● .class files declare
which superpackage they belong to

2007 JavaOneSM Conference | Session 2401 | 24

Superpackages at Run-Time
● Within a superpackage, accessibility is as

today
● Outside a superpackage, the Java Virtual

Machine consults .spkg file to determine
accessibility

● If member is public and exported, then
accessible

● Access control checks are orthogonal to
integrity checks performed by a module
system
● Can circumvent access control by hacking .classThe terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session 2401 | 25

Nested Superpackages
● Superpackages can contain superpackages
● Useful in large projects

● Information hiding between internal components
● A nested superpackage can be exported

● Its exported types are accessible outside the
enclosing superpackage

● Types from non-exported superpackages are only
accessible within the enclosing superpackage

● Multiple levels of nesting possible

2007 JavaOneSM Conference | Session 2401 | 26

Example
superpackage foo {

member superpackage foo.xml, foo.net;
export superpackage foo.xml;

}

superpackage foo.xml member foo {
member package foo.xml.dom,

foo.xml.dom.utils;
export foo.xml.dom.Factory;

}

2007 JavaOneSM Conference | Session 2401 | 27

Impact of Superpackages
● New classfile attribute

● Must work with serialization
● Reification of superpackages in java.lang.reflect

● Must perform access control checks
● javax.lang.model

● JSR 269 Pluggable Annotation Processing
● Documentation and instrumentation

● javadoc and javap
● com.sun.source.tree

● Sun’s compiler Tree API

2007 JavaOneSM Conference | Session 2401 | 28

Miscellenia
● Name/location of super-package.java
● Text or binary format of .spkg file
● Context-sensitive “keywords”

● member/export/superpackage
● Annotations allowed in superpackage declaration
● A class belongs to at most one superpackage
● Superpackage namespace is distinct from (and is

not obscured by) type and package namespaces

2007 JavaOneSM Conference | Session 2401 | 29

Agenda
Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294
Q&A

2007 JavaOneSM Conference | Session 2401 | 30

Package Interfaces
● A class can have an interface, but a

package cannot
● Javadoc™ says which classes to use in a package
● Superpackages restrict public types, but types

are still fundamentally organized as packages
● A package interface makes intentions clear

2007 JavaOneSM Conference | Session 2401 | 31

Separate Compilation Is
Not Very Separate
● It is impossible to avoid referencing a class

somewhere in a Java platform program
● To use new
● To invoke a static factory method

● Compilation requires class definitions
● Class definitions may not always be available
● Dummy classes with empty methods are dull
● A package interface provides the type information

needed for separate compilation

2007 JavaOneSM Conference | Session 2401 | 32

Example
package interface P;
import Z.*;
class C implements I {

public C(int i);
protected Object f;
String m()
throws Exc;

}

package A;
import P.*;
class Client {
C c = new C(5);
... c.f ...
try { c.m(); }
catch (Exc e) {..}

}

2007 JavaOneSM Conference | Session 2401 | 33

Agenda
Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294
Q&A

2007 JavaOneSM Conference | Session 2401 | 34

JSR 294
● “Improved Modularity Support in the Java

Programming Language”
● Expert group discussion started in March 2007

● General agreement on superpackage direction
● Mailing list is publicly readable

● Membership ensures coherence with JSR 277
(Java Module System) and JSR 291 (OSGi)

● Scheduled for inclusion in Java Platform,
Standard Edition 7 (Java SE 7)
● Early access implementation later this year
● Open source via OpenJDK

2007 JavaOneSM Conference | Session 2401 | 35

JSR 294 Expert Group
Membership
● Bryan Atsatt Oracle (and 277, and 291)
● Alex Buckley Sun
● Michal Cierniak Google (and 277)
● Matthew Flatt University of Utah
● Doug Lea SUNY Oswego (and 277)
● Glyn Normington IBM (and 277, and 291)
● Andreas Sterbenz Sun
● Eugene Vigdorchik Jetbrains

2007 JavaOneSM Conference | Session 2401 | 36

Deployment Aspects
● Superpackages work just fine with existing

deployment mechanisms
● Java Archive (JAR) file, WAR, EAR files; Applets,

JNLP/WebStart, etc.
● Even more interesting when combined with

support for deployment modules
● Deployment modules defined by JSR 277

● Superpackage forms basis of deployment module
● Uses members, exports, metadata information

● Other deployment technologies also expected to
take advantage of superpackages

2007 JavaOneSM Conference | Session 2401 | 37

Summary
● Superpackages are an effective mechanism

for information hiding in the Java
programming language

● Extension of the familiar access control model
● Superpackages support the Java Module System
● Scheduled to arrive in Java SE 7

2007 JavaOneSM Conference | Session 2401 | 38

For More Information
● TS-2318

● “JSR 277: Java Module System”

● BOF-2400
● “JSR 277 and JSR 294”

● JSR main page
● http://jcp.org/en/jsr/detail?id=294

● Expert group mailing list archive and observer list
● http://cs.oswego.edu/mailman/listinfo/jsr294-modularity-observer

● Blogs
● http://blogs.sun.com/abuckley/
● http://blogs.sun.com/andreas/

2007 JavaOneSM Conference | Session 2401 | 39

Q&A

2007 JavaOneSM Conference | Session 2401 |

TS-2401

Java Language Modularity
With Superpackages

Alex Buckley
JSR 294 Co-spec lead
Sun Microsystems

Andreas Sterbenz
JSR 294 Co-spec lead
Sun Microsystems

