JavaOne

Java Language Modularity
With Superpackages

Alex Buckley Andreas Sterbenz

JSR 294 Co-spec lead JSR 294 Co-spec lead
Sun Microsystems Sun Microsystems

TS-2401

2007 JavaOne®M Conference | Session 2401 | java.sun.com/javaone

JavaOne

Goal
In the Next 60 Minutes...

2007 JavaOne®M Conference | Session 2401 | 2 java.sun.com/javaone

@ Sun

Modularity

Information Hiding

Superpackages

Package Interfaces

Java Specification Request (JSR) 294

Q&A

2007 JavaOneSM Conference Session 2401

java.sun.com/javaone

@ Sun

Modularity

Information Hiding

Superpackages

Package Interfaces

Java Specification Request (JSR) 294

Q&A

2007 JavaOneSM Conference Session 2401

java.sun.com/javaone

. Java

JavaOne

@ Sun

What Makes a Program Modular?

- Interfaces
- Don'’t rely on implementations

- Protocols
- Enforce good idioms

- Information hiding
. If you can’t see it, you can’t use it

. Contracts
. If you use it, use it right

. Versions, resource declarations, centralized
exception handling, etc.

2007 JavaOne®M Conference | Session 2401 | 5 java.sun.com/javaone

JavaOne

Standards for Modularity
e -

" JSR 291
OSGi

" JSR 277

Java Packaging

Programming
Language
Interfaces

Assertions >

Information Hiding f,f"’/

" JSR 294

Information |
Hiding

'Maven, lvy

Resources

’Sf_f_.?._’ 2007 JavaOneSM Conference | Sessi

@Sun

Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294

Q&A

2007 JavaOneSM Conference

Session 2401

JavaOne

Information Hiding Circa 1972

“ Each module is characterized by its
knowledge of a design decision which
it hides from all others. Its interface is
chosen to reveal as little as possible
about its inner workings. ”

D.L.Parnas
http://www.acm.org/classics/may96/

@ Sun 2007 JavaOneSM Conference | Session 2401 | 8

a.sun.com/javaone

@ Sun

Information Hiding Circa 2007

- Information hiding supports encapsulation
- Encapsulation supports reliable software

Information hiding is an issue of program design
- Should be enabled by the language itself

- Accessibility modifiers strike a good balance
. Simple
- No overlap (Witness removal of private protected)

2007 JavaOne®M Conference | Session 2401 | 9 java.sun.com/javaone

JavaOne

Packages for Information Hiding

Packages help to prevent name conflicts
But are not namespaces

Packages support information hiding
But do not follow its central tenet: Provide an interface

Package names are hierarchical
But package membership is not hierarchical
Member of package P.Q is not member of package P

Projects are often larger than a single package
But packages cannot be composed into a larger entity
"public is too public”

@ Sun 2007 JavaOne®M Conference | Session 2401 | 10 java.sun.com/javaone

JavaOne

"public is too public"

package P package P.Q

Client

(Not realistic to make package
membership hierarchical)

’SE,‘H 2007 JavaOneSM Conference | Session 2401 | 11 java.sun.com fjavaone

JavaOne

Existing Approaches

. Lack of documentation
. Class loaders
. Static classes

@ Sun 2007 JavaOneSM Conference | Session 2401 | 12 java.sun.com /javaone

Emln%orma%lon Elgmg via

[Lack of Documentation

- ldea: Do not document “internal” packages
- Hope nobody will find them
- Problems are obvious

@ Sun 2007 JavaOneSM Conference | Session2401 | 13 java.sun.com/javaone

[.oaders

|dea: two class loaders per “component”
Internal class loader—Resolves all classes
Public class loader—Resolves only exported classes

Problems
Does not address compile time
Does not prevent access via reflection
Breaks down if internal class loader object is “leaked”

Sometimes unclear which class loader should be used
What should the context class loader be set to?

Not what class loaders were designed for

@ Sun 2007 JavaOne®M Conference | Session 2401 | 14 java.sun.com/javaone

“wInformation Hiding via Stafic
Classes

Instead of creating multiple packages, put all
classes into one package

Each package becomes a top-level public class

Each class becomes a static nested class
Public, package private, or private as desired

Problems
Non-intuitive
At the VM level, there are no private nested classes
They are realized as package private classes
Converting existing code requires renaming classes
Many classes in each source file

@ Sun 2007 JavaOne®M Conference | Session 2401 | 15 java.sun.com/javaone

g

~(oal: A language Construct for
Information Hiding

An entity bigger than a package

Accessibility within the entity is wider than
package-private but narrower than public

Hierarchical names guide accessibility
Entity P.Q can be a [hidden] member of entity P

Run-time access control
Universally understood

Interfaces for packages and these new entities
A basis for deployment modules

@ Sun 2007 JavaOne®M Conference | Session 2401 | 16 java.sun.com/javaone

JavaOne

What We Don’t Want to Do

- Introduce friend

- Appropriate in C++ (operator overloading,
no packages)

. Offers no higher-level entity for composing types
. Offers no basis for deployment modules

- Embed deployment modules in the language

Burden programmers who don't use
the new entity

- Have compile-time and run-time behavior differ
- No leaky abstractions!

@ Sun 2007 JavaOneSM Conference | Session2401 | 17 java.sun.com/javaone

@Sun

Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294

Q&A

2007 JavaOneSM Conference

Session 2401 | 18

Definition

A superpackage is a named collection of
one or more packages or superpackages
and their types

Public types can be declared as exported to
make them accessible outside the superpackage

Public types that are not exported are accessible
only to other types in the superpackage

Declared in a Java source file
(super-package. java) and compiled
by the Java compiler

2007 JavaOneSM Conference | Session 2401 | 19

JavaOne

®Sun

What a Superpackage Is Not

- A package(!)
- A namespace
- Atype

2007 JavaOneSM Conference | Session 2401 | 20

JavaOne

Example

superpackage jdk {
member package java.util;
member package java.io;
member package sun.io; // Impl detail

export java.util.*; // Public API
export java.io.*;

@ Sun 2007 JavaOneSM Conference | Session 2401 | 21 java.sun.com/javaone

JavaOne

superpackage S

package P package P.Q

Client

’Sf_f_.?._’ 2007 JavaOne®M Conference | Session 2401 | 22 java.sun.com/javaone

@ Sun

Superpackages at Compile-Time

. super-package. java declares
which types belong to a superpackage

. .7java files do not declare
which superpackage they belong to

/* Run javac here ¥/

. .spkgfile declares
which types belong to a superpackage

. .class files declare
which superpackage they belong to

2007 JavaOneSM Conference | Session 2401 | 23

Superpackages at Run-Time

Within a superpackage, accessiblility is as
today

Outside a superpackage, the Java Virtual
Machine consults . spkg file to determine
accessibility

If member is public and exported, then
accessible

Access control checks are orthogonal to

integrity checks performed by a module
system

The terms “Java Virtual Machin_e” and “JVM” mean a Virtual Machine for the Java™ platform.

Can circumvent acﬁesssmnztmlzsb%hacking . BLAS Sreone

JavaOne

@ Sun

Nested Superpackages

Superpackages can contain superpackages

Useful in large projects
Information hiding between internal components

A nested superpackage can be exported

Its exported types are accessible outside the
enclosing superpackage

Types from non-exported superpackages are only
accessible within the enclosing superpackage

Multiple levels of nesting possible

2007 JavaOne®M Conference | Session 2401 | 25 java.sun.com

/javaone

JavaOne

Example

superpackage foo {
member superpackage foo.xml, foo.net;
export superpackage foo.xml;

}

superpackage foo.xml member foo {
member package foo.xml.dom,
foo.xml.dom.utils;
export foo.xml.dom.Factory;

}

@ Sun 2007 JavaOneSM Conference | Session2401 | 26 java.sun.com/javaone

JavaOne

@ Sun

Impact of Superpackages

New classfile attribute
- Must work with serialization

Reification of superpackages in java.lang.reflect
- Must perform access control checks

javax.lang.model

- JSR 269 Pluggable Annotation Processing
Documentation and instrumentation

. Javadoc and javap

com. sun.source. tree
- Sun’s compiler Tree API

2007 JavaOneSM Conference

ession

a.sun.com/javaone

JavaOne

@ Sun

Miscellenia

- Name/location of super-package. java
. Text or binary format of . spkg file

. Context-sensitive “keywords”
- member/export/superpackage

- Annotations allowed in superpackage declaration
- A class belongs to at most one superpackage

- Superpackage namespace is distinct from (and is
not obscured by) type and package namespaces

2007 JavaOne®M Conference | Session 2401 | 28 java.sun.com/javaone

@Sun

Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294

Q&A

2007 JavaOneSM Conference

Session 2401 | 29

@ Sun

Package Interfaces

A class can have an interface, but a

package cannot

Javadoc™ says which classes to use in a package

Superpackages restrict public types, but types
are still fundamentally organized as packages

A package interface makes intentions clear

2007 JavaOneSM Conference

Session 2401 | 30

JavaOne

Separate Compilation Is
Not Very Separate

It is impossible to avoid referencing a class
somewhere in a Java platform program

To use new
To invoke a static factory method

Compilation requires class definitions
Class definitions may not always be available
Dummy classes with empty methods are dull

A package interface provides the type information
needed for separate compilation

2007 JavaOneSM Conference | Session 2401 | 31

Example

package interface P;
import Z.*;

class C implements I {
public C(int 1);
protected Object f;
String m()
throws Exc;

2007 JavaOneSM Conference | Session 2401 | 32

JavaOne

package A;
import P.*;

class Client {
C ¢ = new C(5);
... c.£ ...
try { c.m(); }
catch (Exc e) {..}
}

java.sun.com/javaone

@Sun

Modularity
Information Hiding
Superpackages
Package Interfaces
JSR 294

Q&A

2007 JavaOneSM Conference

Session 2401 | 33

JSR 294

“Improved Modularity Support in the Java
Programming Language”
Expert group discussion started in March 2007

General agreement on superpackage direction
Mailing list is publicly readable

Membership ensures coherence with JSR 277
(Java Module System) and JSR 291 (OSGi)

Scheduled for inclusion in Java Platform,
Standard Edition 7 (Java SE 7)

Early access implementation later this year
Open source via OpendDK

2007 JavaOneSM Conference | Session 2401 | 34

ne

@ Sun

v XPEer roup
Membership
- Bryan Atsatt Oracle (and 277, and 291)
- Alex Buckley Sun
- Michal Cierniak Google (and 277)
- Matthew Flatt University of Utah
- Doug Lea SUNY Oswego (and 277)

- Glyn Normington IBM (and 277, and 291)
- Andreas Sterbenz Sun
- Eugene Vigdorchik Jetbrains

2007 JavaOne®M Conference | Session 2401 | 35 java.sun.com/javaone

JavaOne

Deployment Aspects

Superpackages work just fine with existing
deployment mechanisms

Java Archive (JAR) file, WAR, EAR files; Applets,
JNLP/WebStart, etc.

Even more interesting when combined with
support for deployment modules

Deployment modules defined by JSR 277
Superpackage forms basis of deployment module
Uses members, exports, metadata information

Other deployment technologies also expected to
take advantage of superpackages

@ Sun 2007 JavaOne®M Conference | Session 2401 | 36 java.sun.com/javaone

. Java

JavaOne

@ Sun

Summary

. Superpackages are an effective mechanism
for information hiding in the Java
programming language

. Extension of the familiar access control model
- Superpackages support the Java Module System
. Scheduled to arrive in Java SE 7

2007 JavaOne®M Conference | Session 2401 | 37 java.sun.com/javaone

JavaOne

For More Information

. 1S-2318
. “JSR 277: Java Module System”

- BOF-2400
. “JSR 277 and JSR 294"
- JSR main page
- http://jcp.org/en/jsr/detail ?id=294
- Expert group mailing list archive and observer list
- http://cs.oswego.edu/mailman/listinfo/jsr294-modularity-observer

. Blogs
. http://blogs.sun.com/abuckley/
. http://blogs.sun.com/andreas/

@ Sun 2007 JavaOneSM Conference | Session2401 | 38 java.sun.com/javaone

JavaOne

2007 JavaOne®M Conference | Session 2401 | 39 java.sun.com/javaone

JavaOne

Java Language Modularity
With Superpackages

Alex Buckley Andreas Sterbenz

JSR 294 Co-spec lead JSR 294 Co-spec lead
Sun Microsystems Sun Microsystems

TS-2401

2007 JavaOne®M Conference | Session 2401 | java.sun.com/javaone

